
Note: In this problem set, there are no green cells, because no answers match the text 
answers.
Clear["Global`*⋆"]

2 - 9 Verifications. Derivations. Comparisons.

9.  Natural spline condition. Using the given coefficients, verify that the spline in example 
2 satisfies g ''[x] = 0 at the ends.

Clear["Global`*⋆"]

The top part of this section does not really apply to the problem. The points are from the 
example referred to by the problem.
data = {{0, 3.9}, {-−0.8, 3.5}, {-−1.5, 2.7},

{-−2.5, 2.2}, {-−4.0, 1.8}, {-−5., 1.5}, {-−5.8, 0}}

{{0, 3.9}, {-−0.8, 3.5}, {-−1.5, 2.7},
{-−2.5, 2.2}, {-−4., 1.8}, {-−5., 1.5}, {-−5.8, 0}}

Some examples of use of interpolating polynomials was done in the last section. I’m keeping 
this in here for now, because it shows up in the plot.
inpp[x_] = InterpolatingPolynomial[data, x]

(5.8 + x)
(0.672414 + x (0.00229885 + (2.5 + x) (0.0561303 + (4. + x) (-−0.024302 +

(0.8 + x) (0.00397479 -− 0.00635968 (5. + x))))))

Simplify[%]

3.9 -− 1.2009 x -− 3.66164 x2 -− 2.4553 x3 -−
0.754728 x4 -− 0.111135 x5 -− 0.00635968 x6

I take a derivative out of curiosity, but it doesn’t relate to the direction the problem should 
be going.
dinpp = Simplify[D[inpp[x], {x, 2}]]

-−7.32327 -− 14.7318 x -− 9.05673 x2 -− 2.22271 x3 -− 0.190791 x4

With the two cells below, I find that the interpolated spline I came up with is clamped at 
the ends.
dinpp /∕. x → 0

-−7.32327

dinpp /∕. x → 6

-−1149.13

Next is the polynomial which the text says accompanies the figure on example 2, p. 825.



tex[x_] = 3.900 -− 0.65083 x2 + 0.033858 x4 +
0.011041 x6 -− 0.0014010 x8 + 0.000055595 x10 -− 0.00000071867 x12

3.9 -− 0.65083 x2 + 0.033858 x4 + 0.011041 x6 -−
0.001401 x8 + 0.000055595 x10 -− 7.1867 × 10-−7 x12

Also without much purpose, I take a derivative of this function.
dtex = Simplify[D[tex[x], {x, 2}]]

-−1.30166 + 0.406296 x2 + 0.33123 x4 -−
0.078456 x6 + 0.00500355 x8 -− 0.0000948644 x10

dtex /∕. x → 0

-−1.30166

dtex /∕. x → 6

-−549.891

Now I plot the two polynomials, but neither is g[x], or really relates to what was asked.
Plot[{inpp[x], tex[x]}, {x, -−6, 1},
PlotStyle → Thickness[0.003], Epilog → Map[Point, data]]
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A formula from the text, meant to calculate q0 is apparently not right
q0[x_] = 3.9 + 0 (x + 5.8) -− 0.61 (x + 5.8)2 -− 0.015 (x + 5.8)3

3.9 -− 0.61 (5.8 + x)2 -− 0.015 (5.8 + x)3

or I am applying it wrong
Solve[q0''[x] ⩵ 0, x]

{{x → -−19.3556}}

which is demonstrated by the next two cells not equaling zero.
q0''[.8]

-−1.814
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q0''[0]

-−1.742

Now switching to the text answer to ponder it. First, in working it out, I see that the below 
cell produces the value the text refers to as its near-zero. The -−1.39 and 0.58 coefficients 
show that the text is looking at the last two columns of the final row of the table at the 
bottom of p. 825. But why are there no terms for aj0 and aj1? As in the calculation of g[x] in 
example 1 on p. 824, it appears that something made the zeroth and first terms drop out, 
even though values for aj0 and aj1 are shown in the table on p. 825. Maybe some day I will 
come back to it and try again to figure out how that happened.
q5[x_] = -−1.39 (x -− 5)2 + 0.58 (x -− 5)3

-−1.39 (-−5 + x)2 + 0.58 (-−5 + x)3

q5''[5.8]

0.004

10 - 16 Determination of splines.
Find the cubic spline g[x] for the given data with k0 and kn as given.

11.  If we started from the piecewise linear function in figure 438, we would obtain g[x] 
in problem 10 as the spline satisfying g '[-2] = f '[-2] = 0, g '[2] = f '[2] = 0. Find and 
sketch or graph the corresponding interpolation polynomial of 4th degree and compare it 
with the spline. Comment.

kru = RGBColor[0.392, 0.823, 0.98];
innerbw = RGBColor[.97, .97, .994];
pts = {{-−2, 0}, {-−0.4, -−0.5}, {-−0.9, 0.85}, {0, 1}};
ptsR = {{2, 0}, {0.4, -−0.5}, {0.9, 0.85}, {0, 1}};
ptsL = {{-−2, 0}, {-−1.1, -−1.5}, {-−1, 1}, {0, 1}};
ptsR2 = {{2, 0}, {1.1, -−1.5}, {1, 1}, {0, 1}};

Clear["Global`*⋆"]
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data = {{-−2, 0}, {-−1, 0}, {0, 1}, {1, 0}, {2, 0}}

{{-−2, 0}, {-−1, 0}, {0, 1}, {1, 0}, {2, 0}}

inpp[x_] = InterpolatingPolynomial[data, x]

(1 + x) (2 + x)
1

2
+ -−

1

2
+
1

4
(-−1 + x) x

p1 = Plot[{inpp[x]}, {x, -−2, 2}, PlotStyle → Thickness[0.003],
AspectRatio → Automatic, Epilog → Map[Point, data]]
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The plot above happens to be of 4th degree, as requested. It looks a lot like the dashed 
curve above. Using the method of piecewise poly described in problem 13 and 15, I could 
get something pretty close to the solid curve in the multi-curve plot, I think.

13. f0 = f[0] = 1,  f1 = f[1] =0,  f2 = f[2] =-−1
f3 = f[3] = 0, k0 = 0, k3 = -−6

Clear["Global`*⋆"]

Needs["Splines`"]

Bounced around for awhile looking for an easy way to work with splines. The text wants to 
give only control points, plus the first derivatives at the ends. This is enough descriptive 
info to plot a solution, but within Mathematica documentation, and considering most of 
what I found on-line, the talk was about basis splines, knots, and weights as well as control 
points. I finally found an excellent resource in Ray Koopman’s answer to SEMma question 
https://mathematica.stackexchange.com/questions/35405/extracting-polynomials-from-a-cubic-spline-
function. It goes straight for the piecewise poly equation without messing around with that 
other spline stuff. I like splines, but as J.M. says in the question site just referenced, 
“Unfortunately, as it stands, BSplineFunction[] objects are immune to exposure from PiecewiseExpand[].”

A comment about the first section. It seems that Solve cannot handle more than three 
control points at a time. I commented out some second derivative conditions that I don’t 
think are necessary, in order to make room for some crucial first derivative conditions, 
without overloading Solve. I had to play with it a little, because the join at x=2, though 
smooth, was lopsided at first. With yellow below,  I simply picked out a first derivative that 
I thought would look good, and then matched it with the calculation of f3.
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dat = {{0, 1}, {1, 0}, {2, -−1}, {3, 0}};

f1[x_] = a1 + b1 *⋆ x + c1 *⋆ x^2 + d1 *⋆ x^3;
f2[x_] = a2 + b2 *⋆ x + c2 *⋆ x^2 + d2 *⋆ x^3;
s = Solve[{f1@dat[[1, 1]] ⩵ dat[[1, 2]],

f1@dat[[2, 1]] ⩵ dat[[2, 2]], f2@dat[[2, 1]] ⩵ dat[[2, 2]],
f2@dat[[3, 1]] ⩵ dat[[3, 2]], f1'@dat[[2, 1]] ⩵ f2'@dat[[2, 1]],
(*⋆f1''@dat[[2,1]]⩵f2''@dat[[2,1]],*⋆)f1''@dat[[1, 1]] ⩵ 0,
(*⋆f2''@dat[[3,1]]⩵0,*⋆)f1'@dat[[1, 1]] ⩵ 0,
f2'@dat[[3, 1]] ⩵ 1.5}, {a1, b1, c1, d1, a2, b2, c2, d2}]

a1 → 1., b1 → 0., c1 → 0., d1 → -−1.,

a2 → 4., b2 → -−4.5, c2 → 5.32907 × 10-−15, d2 → 0.5

After taking care of the first two pieces, I have to do the last one. With pink, I requested a 
smooth join at x=2. I found out I could not get that join smooth and have the second deriva-
tive equal zero on the right end. So I guess that means the right end is “clamped”, and not 
“free” or “natural” in the terms of the text, p. 823. However, I do not see that it violates the 
problem description to have it clamped.
f1[x_] = a1 + b1 *⋆ x + c1 *⋆ x^2 + d1 *⋆ x^3 /∕. {a1 → 1, b1 → 0, c1 → 0, d1 → -−1}
f2[x_] = a2 + b2 *⋆ x + c2 *⋆ x^2 + d2 *⋆ x^3 /∕. {a2 → 4, b2 → -−4.5, c2 → 0, d2 → 0.5}
f3[x_] = a3 + b3 *⋆ x + c3 *⋆ x^2 + d3 *⋆ x^3;

s2 = N[Solve[{f3@dat[[3, 1]] ⩵ dat[[3, 2]],
f3@dat[[4, 1]] ⩵ dat[[4, 2]], f3'@dat[[3, 1]] ⩵ 1.5,
f3'@dat[[4, 1]] ⩵ -−6(*⋆,f3''@dat[[4,1]] ⩵ 0*⋆)}, {a3, b3, c3, d3}]]

1 -− x3 (*⋆ text solution 1-−x2 *⋆)

4 -− 4.5` x + 0.5` x3 (*⋆ text solution -−2(x-−1)-−(x-−1)2+2(x-−1)3 *⋆)

{{a3 → 72., b3 → -−100.5, c3 → 45., d3 → -−6.5}}

f3[x_] =
a3 + b3 *⋆ x + c3 *⋆ x^2 + d3 *⋆ x^3 /∕. {a3 → 72, b3 → -−100.5, c3 → 45, d3 → -−6.5}

72 -− 100.5` x + 45 x2 -−
6.5` x3 (*⋆ text solution -−1 +2(x-−2)+5(x-−2)2-−6(x-−2)3 *⋆)

f[x_] = Piecewise[{{f1[x], 0 ≤ x ≤ 1}, {f2[x], 1 ≤ x ≤ 2}, {f3[x], 2 ≤ x ≤ 3}}]

1 -− x3 0 ≤ x ≤ 1
4 -− 4.5 x + 0.5 x3 1 ≤ x ≤ 2
72 -− 100.5 x + 45 x2 -− 6.5 x3 2 ≤ x ≤ 3
0 True

Incidentally, none of the poly pieces matches the equations listed in the text answer.
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Plot[f[x], {x, 0, 3}, PlotStyle → Thickness[0.003],
Epilog → {Red, PointSize[0.015], Point /∕@ dat}]
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I feel fairly satisfied with this problem. It seems like a fairly general way to build piecewise 
cubic polys when they are needed.

 15.  f0 = f[0] = 4,  f1 = f[2] =0,  f2 = f[4] =-−4
f3 = f[6] = 78, k0 = 0, k3 = 0

Clear["Global`*⋆"]

dat = {{0, 4}, {2, 0}, {4, -−4}, {6, 78}};

I didn’t ask for the Splines package here, and I didn’t need it. I was able to copy everything 
from the last problem, change the designation of control points, and do a minor tweak on 
the join at x=4, choosing a reasonable value of  the first derivative.
f1[x_] = a1 + b1 *⋆ x + c1 *⋆ x^2 + d1 *⋆ x^3;
f2[x_] = a2 + b2 *⋆ x + c2 *⋆ x^2 + d2 *⋆ x^3;
s = Solve[{f1@dat[[1, 1]] ⩵ dat[[1, 2]],

f1@dat[[2, 1]] ⩵ dat[[2, 2]], f2@dat[[2, 1]] ⩵ dat[[2, 2]],
f2@dat[[3, 1]] ⩵ dat[[3, 2]], f1'@dat[[2, 1]] ⩵ f2'@dat[[2, 1]],
(*⋆f1''@dat[[2,1]]⩵f2''@dat[[2,1]],*⋆)f1''@dat[[1, 1]] ⩵ 0,
(*⋆f2''@dat[[3,1]]⩵0,*⋆)f1'@dat[[1, 1]] ⩵ 0,
f2'@dat[[3, 1]] ⩵ 1.0}, {a1, b1, c1, d1, a2, b2, c2, d2}]

{{a1 → 4., b1 → 0., c1 → 0.,
d1 → -−0.5, a2 → 24., b2 → -−19., c2 → 4., d2 → -−0.25}}

f1[x_] = a1 + b1 *⋆ x + c1 *⋆ x^2 + d1 *⋆ x^3 /∕. a1 → 4, b1 → 0, c1 → 0, d1 → -−
1

2


f2[x_] =
a2 + b2 *⋆ x + c2 *⋆ x^2 + d2 *⋆ x^3 /∕. {a2 → 24., b2 → -−19., c2 → 4., d2 → -−0.25}

f3[x_] = a3 + b3 *⋆ x + c3 *⋆ x^2 + d3 *⋆ x^3;

4 -−
x3

2
(*⋆ text solution 4+x2-−x3 *⋆)
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24.` -− 19.` x + 4.` x2 -−
0.25` x3 (*⋆ text solution -−8(x-−2)-−5(x-−2)2+5(x-−2)3 *⋆)

s2 = N[Solve[{f3@dat[[3, 1]] ⩵ dat[[3, 2]],
f3@dat[[4, 1]] ⩵ dat[[4, 2]], f3'@dat[[3, 1]] ⩵ 1.0,
f3'@dat[[4, 1]] ⩵ 0(*⋆,f3''@dat[[4,1]] ⩵ 0*⋆)}, {a3, b3, c3, d3}]]

{{a3 → 2256., b3 → -−1455., c3 → 303.5, d3 → -−20.25}}

f3[x_] = a3 + b3 *⋆ x + c3 *⋆ x^2 + d3 *⋆ x^3 /∕.
{a3 → 2256, b3 → -−1455, c3 → 303.5, d3 → -−20.25}

2256 -− 1455 x + 303.5` x2 -−
20.25` x3 (*⋆ text solution 4+32(x-−4)+25(x-−4)2-−11(x-−4)3 *⋆)

f[x_] = Piecewise[{{f1[x], 0 ≤ x ≤ 2}, {f2[x], 2 ≤ x ≤ 4}, {f3[x], 4 ≤ x ≤ 6}}]

4 -− x3

2
0 ≤ x ≤ 2

24. -− 19. x + 4. x2 -− 0.25 x3 2 ≤ x ≤ 4
2256 -− 1455 x + 303.5 x2 -− 20.25 x3 4 ≤ x ≤ 6
0 True

p1 = Plot[f[x], {x, 0, 6}, PlotStyle → Thickness[0.003],
PlotRange → {{-−0.5, 7}, {-−15, 90}}, ImageSize → 300,
Epilog → {Red, PointSize[0.015], Point /∕@ dat}];

p2 = Plot[f[x], {x, 0, 6}, PlotStyle → Thickness[0.003],
PlotRange → {{3, 4.6}, {-−10, 10}}, ImageSize → 300,
Epilog → {Red, PointSize[0.015], Point /∕@ dat}];

The plots below show that all is okay at x=4. However, none of the piecewise equations 
match the answer in the text. Again, I feel this approach could be useful.
Row[{p1, p2}]
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17.  If a cubic spline is three times continuously differentiable (that is, it has continuous 
first, second, and third derivatives), show that it must be a single polynomial.

Hmm, sounds slightly intriguing.
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